1.はじめに

数時間から数十時間にわたる高波浪状態の継続に よる海岸構造物への被害を防ぐためには,高波浪期 間での波高の統計学的特性を知り,それに基づく耐 波設計が必要になる.波高の確率分布は定常性など を前提にRayleigh分布で表されるが,実際の波浪場 は非定常であり,ある程度以上の期間における波高 の出現頻度がこの分布に従う保証はない.非定常性 を前提に波高の確率分布を導くことは困難であるた め,本研究ではまず高波浪期間の連続観測データを 解析し,その波高の出現特性を検討する.さらに, 連続観測データを補うことを目的に,線形および非 線形不規則波の数値シミュレーションデータにより 波高の出現特性を推定することの可能性を検討する.

2.波浪の連続観測データの基礎的特性

本研究では山形県由良港の北西沖で連続観測され た7ケース(D70831,D71217,D81214,D71124, D80109,D80202,D00125)の水位変動データを 用いる.基礎的な解析として,まず観測データを20 分間の区間に分割し,区間ごとに平均水位を補正し た後,ゼロダウンクロス法で解析を行う.この結果, D70831,D71217,D81214では有義波高の変化が 大きいのに対し,他の4ケースではその変化は小さ いことが示された.また連続観測データのスペクト ルと,波浪の標準的なスペクトルであるJONSWAP スペクトル,Wallopsスペクトルとの比較を行い, 前者の方が観測データとの適合度がよいことが確認 された.

3.波高の出現特性の検討

連続観測データの解析と併せて,成分波の線形重 ね合わせによる水位変動の数値シミュレーションを 行い,そのデータも解析する.数値シミュレーショ ンは,1時間毎の有義波諸元が得られている場合を 想定し,これをスプライン補間して求めた20分毎の 有義波諸元をもとに計算する.また,シミュレーシ ョンにはスペクトルも必要である.上述のように, 連続観測データに対してはJONSWAPスペクトル の適合性を確認しているが,さらにその形状パラメ ータの値を決めなければならない.そのため,それ ぞれの連続観測データで有義波高が最大となるあた りのスペクトルと,γ=2.0と3.3のJONSWAPス

日本建設コンサルタント(株) 萩 義紀

ペクトルとの適合性を比較した.しかし,どちらが より適合しているかが明確ではなかったため,γ= 2.0と3.3の両方を用いる.

この数値シミュレーションデータによる波高の出 現特性の推定が可能であるかを検討するために、連 続観測データによる波高の出現特性との比較を行う 必要がある.そのための解析対象となる高波浪期間 は以下のように設定する. 有義波高の変化が大きい 3 ケースでは, 0.8 × (H_{1/3}) max を下限の目安として 基準値を決め、有義波高がそれ以上となっている期 間を高波浪期間とする.他の4ケースでは,変化が 小さく基準値の設定が困難であるため,ほぼ定常と 見なせる期間を高波浪期間とする.この期間におい て水位変動データをゼロダウンクロス法で解析し, 各種代表波の波高および波高の相対度数を求める. さらに,累積相対度数に対して Weibull 分布の当て はめを行う.その結果,連続観測データとシミュレ ーションデータに対する Weibull 分布の形状母数は ともに 2.0 以上となり, また両者は近い値となるこ とが確認された 図 - 1 2 に D70831(基準値 5.5m) における波高の超過確率を示す.図中の は連続観 測データ, はシミュレーションデータ, 実線はシ ミュレーションデータに当てはめた Weibull 分布, 破線は Rayleigh 分布である. yの値に関係なく連続 観測データとシミュレーションデータの超過確率は よく合っており,波高の出現特性をほぼ再現してい るといえる.

4.波浪観測点のデータによる波高の出現特性の推定

3.に示したシミュレーション手法を用い,通常の 波浪観測データ(有義波諸元)をもとに,高波浪期 間における波高の出現特性の推定を行う.対象とす るのは,気象庁による波浪観測点のうち,日本海側 の4地点(松前,温海,経ヶ岬,鹿島)における観 測データである. 各観測点において, 大きな有義波 高が観測されたときを対象として,3.で述べた数値 シミュレーションとデータ解析を行う.結果の一例 として,図-3,4に松前の基準値6.5mにおける波 高の超過確率を示す.図中の実線が当てはめた Weibull 分布を表すが、シミュレーションデータ(図 中の)との対応はよい.また,Weibull 分布の形 状母数は 2.0 に近い値となるケースが多くなった. さらに,高波高の領域で Weibull 分布と Rayleigh 分布の両方を上回る出現確率の波が見られるケース がある.しかし,観測データの(H1/3) maxを基準と すると,その2倍以上の波は存在しておらず,従来 の設計波基準の範囲内にある.

5. 非線形干渉を考慮した不規則波の数値シミュレ ーションと波高の出現特性

3,4では線形不規則波による検討を行ったが,実際の波浪では成分波間の非線形干渉が生じていると考えられる.本研究で対象としている高波浪の場合には,その影響を考慮する必要がある.そこで Dommermuth and Yue (1987)の手法により非線 形干渉を考慮した不規則波の数値シミュレーション を行い,そのデータに基づいて波高の出現特性を検 討する.ここで用いる基礎方程式は次式のように与 えられる

$$\eta_{t} = -\phi_{x}^{s} \cdot \eta_{x} + \{ 1 + (\eta_{x})^{2} \} \phi_{z}$$
(1)

$$\phi_t^s = -\eta - \frac{1}{2} (\phi_x^s)^2 + \frac{1}{2} \{1 + (\eta_x)^2\} \phi_z^2$$
(2)

ここに,ηは水面波形,φ^sは水面での速度ポテンシャ ルである.また,φ_zはN個のフーリエモードからな る波動場において M 次まで非線形干渉を考慮した 場合,

$$\phi_{z} = \sum_{m=1}^{M} \sum_{k=0}^{M-m} \frac{\eta^{k}}{k!} \sum_{n=1}^{N} \phi_{n}^{(m)}(t) \frac{\partial^{k+1}}{\partial z^{k+1}} \psi_{n}(x,0)$$
(3)

$$\psi_n(x,z) = \frac{\cosh\{k_n(z+h)\}}{\cosh k_n h} \exp(ik_n x)$$

$$\sum_{n=1}^{N} \phi_n^{(1)}(t) \psi_n(x,0) = \phi^S$$
(5)

$$\sum_{n=1}^{N} \phi_{n}^{(m)}(t) \psi_{n}(x,0) = -\sum_{k=1}^{m-1} \frac{\eta^{k}}{k!} \frac{\partial^{k}}{\partial z^{k}} \cdot \left[\sum_{n=1}^{N} \phi_{n}^{(m-n)}(t) \psi_{n}(x,0) \right] \qquad (m = 2, 3, \cdots, M)$$
(6)

 $\eta と \phi^{s}$ の初期値は線形近似のもとで,JONSWAPスペクトルと有義波諸元を用いて与える. ϕ_{z} の計算は実空間上で aliasing 誤差を除去しつつ行い,時間発展は4次の Runge-Kutta 法で計算する.解析対象とするデータは有義波高の変化が大きい3ケースであり,解析区間は 3.と同様のものである.図-5 に,D70831の基準値 5.5m における波高の超過確率を示す.非線形不規則波のシミュレーションデータによる波高の超過確率(図中の)は,連続観測データ()に比べて x>6.0の領域で過大な出現確率を与えている.また,x>7.0の領域でWeibull分布,Rayleigh分布の両方を上回る出現確率の波が存在する場合がある.しかし,4.の結果と同様に,(H_{1/3})maxを基準とするとその2倍を大きく越える波高とはなっていない.

